1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
//! A multi-producer, single-consumer, futures-aware, FIFO queue with back pressure.
//!
//! A channel can be used as a communication primitive between tasks running on
//! `futures-rs` executors. Channel creation provides `Receiver` and `Sender`
//! handles. `Receiver` implements `Stream` and allows a task to read values
//! out of the channel. If there is no message to read from the channel, the
//! current task will be notified when a new value is sent. `Sender` implements
//! the `Sink` trait and allows a task to send messages into the channel. If
//! the channel is at capacity, then send will be rejected and the task will be
//! notified when additional capacity is available.
//!
//! # Disconnection
//!
//! When all `Sender` handles have been dropped, it is no longer possible to
//! send values into the channel. This is considered the termination event of
//! the stream. As such, `Sender::poll` will return `Ok(Ready(None))`.
//!
//! If the receiver handle is dropped, then messages can no longer be read out
//! of the channel. In this case, a `send` will result in an error.
//!
//! # Clean Shutdown
//!
//! If the `Receiver` is simply dropped, then it is possible for there to be
//! messages still in the channel that will not be processed. As such, it is
//! usually desirable to perform a "clean" shutdown. To do this, the receiver
//! will first call `close`, which will prevent any further messages to be sent
//! into the channel. Then, the receiver consumes the channel to completion, at
//! which point the receiver can be dropped.

// At the core, the channel uses an atomic FIFO queue for message passing. This
// queue is used as the primary coordination primitive. In order to enforce
// capacity limits and handle back pressure, a secondary FIFO queue is used to
// send parked task handles.
//
// The general idea is that the channel is created with a `buffer` size of `n`.
// The channel capacity is `n + num-senders`. Each sender gets one "guaranteed"
// slot to hold a message. This allows `Sender` to know for a fact that a send
// will succeed *before* starting to do the actual work of sending the value.
// Since most of this work is lock-free, once the work starts, it is impossible
// to safely revert.
//
// If the sender is unable to process a send operation, then the the curren
// task is parked and the handle is sent on the parked task queue.
//
// Note that the implementation guarantees that the channel capacity will never
// exceed the configured limit, however there is no *strict* guarantee that the
// receiver will wake up a parked task *immediately* when a slot becomes
// available. However, it will almost always unpark a task when a slot becomes
// available and it is *guaranteed* that a sender will be unparked when the
// message that caused the sender to become parked is read out of the channel.
//
// The steps for sending a message are roughly:
//
// 1) Increment the channel message count
// 2) If the channel is at capacity, push the task handle onto the wait queue
// 3) Push the message onto the message queue.
//
// The steps for receiving a message are roughly:
//
// 1) Pop a message from the message queue
// 2) Pop a task handle from the wait queue
// 3) Decrement the channel message count.
//
// It's important for the order of operations on lock-free structures to happen
// in reverse order between the sender and receiver. This makes the message
// queue the primary coordination structure and establishes the necessary
// happens-before semantics required for the acquire / release semantics used
// by the queue structure.

use std::fmt;
use std::error::Error;
use std::any::Any;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::{Arc, Mutex};
use std::thread;
use std::usize;

use sync::mpsc::queue::{Queue, PopResult};
use task::{self, Task};
use {Async, AsyncSink, Poll, StartSend, Sink, Stream};

mod queue;

/// The transmission end of a channel which is used to send values.
///
/// This is created by the `channel` method.
#[derive(Debug)]
pub struct Sender<T> {
    // Channel state shared between the sender and receiver.
    inner: Arc<Inner<T>>,

    // Handle to the task that is blocked on this sender. This handle is sent
    // to the receiver half in order to be notified when the sender becomes
    // unblocked.
    sender_task: SenderTask,

    // True if the sender might be blocked. This is an optimization to avoid
    // having to lock the mutex most of the time.
    maybe_parked: bool,
}

/// The transmission end of a channel which is used to send values.
///
/// This is created by the `unbounded` method.
#[derive(Debug)]
pub struct UnboundedSender<T>(Sender<T>);

fn _assert_kinds() {
    fn _assert_send<T: Send>() {}
    fn _assert_sync<T: Sync>() {}
    fn _assert_clone<T: Clone>() {}
    _assert_send::<UnboundedSender<u32>>();
    _assert_sync::<UnboundedSender<u32>>();
    _assert_clone::<UnboundedSender<u32>>();
}


/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is a concrete implementation of a stream which can be used to represent
/// a stream of values being computed elsewhere. This is created by the
/// `channel` method.
#[derive(Debug)]
pub struct Receiver<T> {
    inner: Arc<Inner<T>>,
}

/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is a concrete implementation of a stream which can be used to represent
/// a stream of values being computed elsewhere. This is created by the
/// `unbounded` method.
#[derive(Debug)]
pub struct UnboundedReceiver<T>(Receiver<T>);

/// Error type for sending, used when the receiving end of a channel is
/// dropped
#[derive(Clone, PartialEq, Eq)]
pub struct SendError<T>(T);

impl<T> fmt::Debug for SendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_tuple("SendError")
            .field(&"...")
            .finish()
    }
}

impl<T> fmt::Display for SendError<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "send failed because receiver is gone")
    }
}

impl<T: Any> Error for SendError<T>
{
    fn description(&self) -> &str {
        "send failed because receiver is gone"
    }
}

impl<T> SendError<T> {
    /// Returns the message that was attempted to be sent but failed.
    pub fn into_inner(self) -> T {
        self.0
    }
}

#[derive(Debug)]
struct Inner<T> {
    // Max buffer size of the channel. If `None` then the channel is unbounded.
    buffer: Option<usize>,

    // Internal channel state. Consists of the number of messages stored in the
    // channel as well as a flag signalling that the channel is closed.
    state: AtomicUsize,

    // Atomic, FIFO queue used to send messages to the receiver
    message_queue: Queue<Option<T>>,

    // Atomic, FIFO queue used to send parked task handles to the receiver.
    parked_queue: Queue<SenderTask>,

    // Number of senders in existence
    num_senders: AtomicUsize,

    // Handle to the receiver's task.
    recv_task: Mutex<ReceiverTask>,
}

// Struct representation of `Inner::state`.
#[derive(Debug, Clone, Copy)]
struct State {
    // `true` when the channel is open
    is_open: bool,

    // Number of messages in the channel
    num_messages: usize,
}

#[derive(Debug)]
struct ReceiverTask {
    unparked: bool,
    task: Option<Task>,
}

// Returned from Receiver::try_park()
enum TryPark {
    Parked,
    Closed,
    NotEmpty,
}

// The `is_open` flag is stored in the left-most bit of `Inner::state`
const OPEN_MASK: usize = 1 << 31;

// When a new channel is created, it is created in the open state with no
// pending messages.
const INIT_STATE: usize = OPEN_MASK;

// The maximum number of messages that a channel can track is `usize::MAX > 1`
const MAX_CAPACITY: usize = !(OPEN_MASK);

// The maximum requested buffer size must be less than the maximum capacity of
// a channel. This is because each sender gets a guaranteed slot.
const MAX_BUFFER: usize = MAX_CAPACITY >> 1;

// Sent to the consumer to wake up blocked producers
type SenderTask = Arc<Mutex<Option<Task>>>;

/// Creates an in-memory channel implementation of the `Stream` trait with
/// bounded capacity.
///
/// This method creates a concrete implementation of the `Stream` trait which
/// can be used to send values across threads in a streaming fashion. This
/// channel is unique in that it implements back pressure to ensure that the
/// sender never outpaces the receiver. The channel capacity is equal to
/// `buffer + num-senders`. In other words, each sender gets a guaranteed slot
/// in the channel capacity, and on top of that there are `buffer` "first come,
/// first serve" slots available to all senders.
///
/// The `Receiver` returned implements the `Stream` trait and has access to any
/// number of the associated combinators for transforming the result.
pub fn channel<T>(buffer: usize) -> (Sender<T>, Receiver<T>) {
    // Check that the requested buffer size does not exceed the maximum buffer
    // size permitted by the system.
    assert!(buffer < MAX_BUFFER, "requested buffer size too large");
    channel2(Some(buffer))
}

/// Creates an in-memory channel implementation of the `Stream` trait with
/// unbounded capacity.
///
/// This method creates a concrete implementation of the `Stream` trait which
/// can be used to send values across threads in a streaming fashion. A `send`
/// on this channel will always succeed as long as the receive half has not
/// been closed. If the receiver falls behind, messages will be buffered
/// internally.
///
/// **Note** that the amount of available system memory is an implicit bound to
/// the channel. Using an `unbounded` channel has the ability of causing the
/// process to run out of memory. In this case, the process will be aborted.
pub fn unbounded<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
    let (tx, rx) = channel2(None);
    (UnboundedSender(tx), UnboundedReceiver(rx))
}

fn channel2<T>(buffer: Option<usize>) -> (Sender<T>, Receiver<T>) {
    let inner = Arc::new(Inner {
        buffer: buffer,
        state: AtomicUsize::new(INIT_STATE),
        message_queue: Queue::new(),
        parked_queue: Queue::new(),
        num_senders: AtomicUsize::new(1),
        recv_task: Mutex::new(ReceiverTask {
            unparked: false,
            task: None,
        }),
    });

    let tx = Sender {
        inner: inner.clone(),
        sender_task: Arc::new(Mutex::new(None)),
        maybe_parked: false,
    };

    let rx = Receiver {
        inner: inner,
    };

    (tx, rx)
}

/*
 *
 * ===== impl Sender =====
 *
 */

impl<T> Sender<T> {
    // Do the send without failing
    fn do_send(&mut self, msg: Option<T>, can_park: bool) -> Result<(), SendError<T>> {
        // First, increment the number of messages contained by the channel.
        // This operation will also atomically determine if the sender task
        // should be parked.
        //
        // None is returned in the case that the channel has been closed by the
        // receiver. This happens when `Receiver::close` is called or the
        // receiver is dropped.
        let park_self = match self.inc_num_messages(msg.is_none()) {
            Some(park_self) => park_self,
            None => {
                // The receiver has closed the channel. Only abort if actually
                // sending a message. It is important that the stream
                // termination (None) is always sent. This technically means
                // that it is possible for the queue to contain the following
                // number of messages:
                //
                //     num-senders + buffer + 1
                //
                if let Some(msg) = msg {
                    return Err(SendError(msg));
                } else {
                    return Ok(());
                }
            }
        };

        // If the channel has reached capacity, then the sender task needs to
        // be parked. This will send the task handle on the parked task queue.
        //
        // However, when `do_send` is called while dropping the `Sender`,
        // `task::current()` can't be called safely. In this case, in order to
        // maintain internal consistency, a blank message is pushed onto the
        // parked task queue.
        if park_self {
            self.park(can_park);
        }

        self.queue_push_and_signal(msg);

        Ok(())
    }

    // Do the send without parking current task.
    //
    // To be called from unbounded sender.
    fn do_send_nb(&self, msg: T) -> Result<(), SendError<T>> {
        match self.inc_num_messages(false) {
            Some(park_self) => assert!(!park_self),
            None => return Err(SendError(msg)),
        };

        self.queue_push_and_signal(Some(msg));

        Ok(())
    }

    // Push message to the queue and signal to the receiver
    fn queue_push_and_signal(&self, msg: Option<T>) {
        // Push the message onto the message queue
        self.inner.message_queue.push(msg);

        // Signal to the receiver that a message has been enqueued. If the
        // receiver is parked, this will unpark the task.
        self.signal();
    }

    // Increment the number of queued messages. Returns if the sender should
    // block.
    fn inc_num_messages(&self, close: bool) -> Option<bool> {
        let mut curr = self.inner.state.load(SeqCst);

        loop {
            let mut state = decode_state(curr);

            // The receiver end closed the channel.
            if !state.is_open {
                return None;
            }

            // This probably is never hit? Odds are the process will run out of
            // memory first. It may be worth to return something else in this
            // case?
            assert!(state.num_messages < MAX_CAPACITY, "buffer space exhausted; \
                    sending this messages would overflow the state");

            state.num_messages += 1;

            // The channel is closed by all sender handles being dropped.
            if close {
                state.is_open = false;
            }

            let next = encode_state(&state);
            match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
                Ok(_) => {
                    // Block if the current number of pending messages has exceeded
                    // the configured buffer size
                    let park_self = match self.inner.buffer {
                        Some(buffer) => state.num_messages > buffer,
                        None => false,
                    };

                    return Some(park_self)
                }
                Err(actual) => curr = actual,
            }
        }
    }

    // Signal to the receiver task that a message has been enqueued
    fn signal(&self) {
        // TODO
        // This logic can probably be improved by guarding the lock with an
        // atomic.
        //
        // Do this step first so that the lock is dropped when
        // `unpark` is called
        let task = {
            let mut recv_task = self.inner.recv_task.lock().unwrap();

            // If the receiver has already been unparked, then there is nothing
            // more to do
            if recv_task.unparked {
                return;
            }

            // Setting this flag enables the receiving end to detect that
            // an unpark event happened in order to avoid unecessarily
            // parking.
            recv_task.unparked = true;
            recv_task.task.take()
        };

        if let Some(task) = task {
            task.notify();
        }
    }

    fn park(&mut self, can_park: bool) {
        // TODO: clean up internal state if the task::current will fail

        let task = if can_park {
            Some(task::current())
        } else {
            None
        };

        *self.sender_task.lock().unwrap() = task;

        // Send handle over queue
        let t = self.sender_task.clone();
        self.inner.parked_queue.push(t);

        // Check to make sure we weren't closed after we sent our task on the
        // queue
        let state = decode_state(self.inner.state.load(SeqCst));
        self.maybe_parked = state.is_open;
    }

    fn poll_unparked(&mut self) -> Async<()> {
        // First check the `maybe_parked` variable. This avoids acquiring the
        // lock in most cases
        if self.maybe_parked {
            // Get a lock on the task handle
            let mut task = self.sender_task.lock().unwrap();

            if task.is_none() {
                self.maybe_parked = false;
                return Async::Ready(())
            }

            // At this point, an unpark request is pending, so there will be an
            // unpark sometime in the future. We just need to make sure that
            // the correct task will be notified.
            //
            // Update the task in case the `Sender` has been moved to another
            // task
            *task = Some(task::current());

            Async::NotReady
        } else {
            Async::Ready(())
        }
    }
}

impl<T> Sink for Sender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        // If the sender is currently blocked, reject the message before doing
        // any work.
        if !self.poll_unparked().is_ready() {
            return Ok(AsyncSink::NotReady(msg));
        }

        // The channel has capacity to accept the message, so send it.
        try!(self.do_send(Some(msg), true));

        Ok(AsyncSink::Ready)
    }

    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }

    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<T> UnboundedSender<T> {
    /// Sends the provided message along this channel.
    ///
    /// This is an unbounded sender, so this function differs from `Sink::send`
    /// by ensuring the return type reflects that the channel is always ready to
    /// receive messages.
    pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
        self.0.do_send_nb(msg)
    }
}

impl<T> Sink for UnboundedSender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        self.0.start_send(msg)
    }

    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        self.0.poll_complete()
    }

    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<'a, T> Sink for &'a UnboundedSender<T> {
    type SinkItem = T;
    type SinkError = SendError<T>;

    fn start_send(&mut self, msg: T) -> StartSend<T, SendError<T>> {
        try!(self.0.do_send_nb(msg));
        Ok(AsyncSink::Ready)
    }

    fn poll_complete(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }

    fn close(&mut self) -> Poll<(), SendError<T>> {
        Ok(Async::Ready(()))
    }
}

impl<T> Clone for UnboundedSender<T> {
    fn clone(&self) -> UnboundedSender<T> {
        UnboundedSender(self.0.clone())
    }
}


impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        // Since this atomic op isn't actually guarding any memory and we don't
        // care about any orderings besides the ordering on the single atomic
        // variable, a relaxed ordering is acceptable.
        let mut curr = self.inner.num_senders.load(SeqCst);

        loop {
            // If the maximum number of senders has been reached, then fail
            if curr == self.inner.max_senders() {
                panic!("cannot clone `Sender` -- too many outstanding senders");
            }

            debug_assert!(curr < self.inner.max_senders());

            let next = curr + 1;
            let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst);

            // The ABA problem doesn't matter here. We only care that the
            // number of senders never exceeds the maximum.
            if actual == curr {
                return Sender {
                    inner: self.inner.clone(),
                    sender_task: Arc::new(Mutex::new(None)),
                    maybe_parked: false,
                };
            }

            curr = actual;
        }
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        // Ordering between variables don't matter here
        let prev = self.inner.num_senders.fetch_sub(1, SeqCst);

        if prev == 1 {
            let _ = self.do_send(None, false);
        }
    }
}

/*
 *
 * ===== impl Receiver =====
 *
 */

impl<T> Receiver<T> {
    /// Closes the receiving half
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    pub fn close(&mut self) {
        let mut curr = self.inner.state.load(SeqCst);

        loop {
            let mut state = decode_state(curr);

            if !state.is_open {
                break
            }

            state.is_open = false;

            let next = encode_state(&state);
            match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
                Ok(_) => break,
                Err(actual) => curr = actual,
            }
        }

        // Wake up any threads waiting as they'll see that we've closed the
        // channel and will continue on their merry way.
        loop {
            match unsafe { self.inner.parked_queue.pop() } {
                PopResult::Data(task) => {
                    let task = task.lock().unwrap().take();
                    if let Some(task) = task {
                        task.notify();
                    }
                }
                PopResult::Empty => break,
                PopResult::Inconsistent => thread::yield_now(),
            }
        }
    }

    fn next_message(&mut self) -> Async<Option<T>> {
        // Pop off a message
        loop {
            match unsafe { self.inner.message_queue.pop() } {
                PopResult::Data(msg) => {
                    return Async::Ready(msg);
                }
                PopResult::Empty => {
                    // The queue is empty, return NotReady
                    return Async::NotReady;
                }
                PopResult::Inconsistent => {
                    // Inconsistent means that there will be a message to pop
                    // in a short time. This branch can only be reached if
                    // values are being produced from another thread, so there
                    // are a few ways that we can deal with this:
                    //
                    // 1) Spin
                    // 2) thread::yield_now()
                    // 3) task::current().unwrap() & return NotReady
                    //
                    // For now, thread::yield_now() is used, but it would
                    // probably be better to spin a few times then yield.
                    thread::yield_now();
                }
            }
        }
    }

    // Unpark a single task handle if there is one pending in the parked queue
    fn unpark_one(&mut self) {
        loop {
            match unsafe { self.inner.parked_queue.pop() } {
                PopResult::Data(task) => {
                    // Do this step first so that the lock is dropped when
                    // `unpark` is called
                    let task = task.lock().unwrap().take();

                    if let Some(task) = task {
                        task.notify();
                    }

                    return;
                }
                PopResult::Empty => {
                    // Queue empty, no task to wake up.
                    return;
                }
                PopResult::Inconsistent => {
                    // Same as above
                    thread::yield_now();
                }
            }
        }
    }

    // Try to park the receiver task
    fn try_park(&self) -> TryPark {
        let curr = self.inner.state.load(SeqCst);
        let state = decode_state(curr);

        // If the channel is closed, then there is no need to park.
        if !state.is_open && state.num_messages == 0 {
            return TryPark::Closed;
        }

        // First, track the task in the `recv_task` slot
        let mut recv_task = self.inner.recv_task.lock().unwrap();

        if recv_task.unparked {
            // Consume the `unpark` signal without actually parking
            recv_task.unparked = false;
            return TryPark::NotEmpty;
        }

        recv_task.task = Some(task::current());
        TryPark::Parked
    }

    fn dec_num_messages(&self) {
        let mut curr = self.inner.state.load(SeqCst);

        loop {
            let mut state = decode_state(curr);

            state.num_messages -= 1;

            let next = encode_state(&state);
            match self.inner.state.compare_exchange(curr, next, SeqCst, SeqCst) {
                Ok(_) => break,
                Err(actual) => curr = actual,
            }
        }
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;
    type Error = ();

    fn poll(&mut self) -> Poll<Option<T>, ()> {
        loop {
            // Try to read a message off of the message queue.
            let msg = match self.next_message() {
                Async::Ready(msg) => msg,
                Async::NotReady => {
                    // There are no messages to read, in this case, attempt to
                    // park. The act of parking will verify that the channel is
                    // still empty after the park operation has completed.
                    match self.try_park() {
                        TryPark::Parked => {
                            // The task was parked, and the channel is still
                            // empty, return NotReady.
                            return Ok(Async::NotReady);
                        }
                        TryPark::Closed => {
                            // The channel is closed, there will be no further
                            // messages.
                            return Ok(Async::Ready(None));
                        }
                        TryPark::NotEmpty => {
                            // A message has been sent while attempting to
                            // park. Loop again, the next iteration is
                            // guaranteed to get the message.
                            continue;
                        }
                    }
                }
            };

            // If there are any parked task handles in the parked queue, pop
            // one and unpark it.
            self.unpark_one();

            // Decrement number of messages
            self.dec_num_messages();

            // Return the message
            return Ok(Async::Ready(msg));
        }
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        // Drain the channel of all pending messages
        self.close();
        while self.next_message().is_ready() {
            // ...
        }
    }
}

impl<T> UnboundedReceiver<T> {
    /// Closes the receiving half
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    pub fn close(&mut self) {
        self.0.close();
    }
}

impl<T> Stream for UnboundedReceiver<T> {
    type Item = T;
    type Error = ();

    fn poll(&mut self) -> Poll<Option<T>, ()> {
        self.0.poll()
    }
}

/*
 *
 * ===== impl Inner =====
 *
 */

impl<T> Inner<T> {
    // The return value is such that the total number of messages that can be
    // enqueued into the channel will never exceed MAX_CAPACITY
    fn max_senders(&self) -> usize {
        match self.buffer {
            Some(buffer) => MAX_CAPACITY - buffer,
            None => MAX_BUFFER,
        }
    }
}

unsafe impl<T: Send> Send for Inner<T> {}
unsafe impl<T: Send> Sync for Inner<T> {}

/*
 *
 * ===== Helpers =====
 *
 */

fn decode_state(num: usize) -> State {
    State {
        is_open: num & OPEN_MASK == OPEN_MASK,
        num_messages: num & MAX_CAPACITY,
    }
}

fn encode_state(state: &State) -> usize {
    let mut num = state.num_messages;

    if state.is_open {
        num |= OPEN_MASK;
    }

    num
}