1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A lock-free concurrent work-stealing deque
//!
//! This module contains a hybrid implementation of the Chase-Lev work stealing deque
//! described in ["Dynamic Circular Work-Stealing Deque"][chase_lev] and the improved version
//! described in ["Correct and Efficient Work-Stealing for Weak Memory Models"][weak_chase_lev].
//! The implementation is heavily based on the pseudocode found in the papers.
//!
//! # Example
//!
//! ```
//! use crossbeam::sync::chase_lev;
//! let (mut worker, stealer) = chase_lev::deque();
//!
//! // Only the worker may push/try_pop
//! worker.push(1);
//! worker.try_pop();
//!
//! // Stealers take data from the other end of the deque
//! worker.push(1);
//! stealer.steal();
//!
//! // Stealers can be cloned to have many stealers stealing in parallel
//! worker.push(1);
//! let stealer2 = stealer.clone();
//! stealer2.steal();
//! ```
//!
//! [chase_lev]: http://neteril.org/~jeremie/Dynamic_Circular_Work_Queue.pdf
//! [weak_chase_lev]: http://www.di.ens.fr/~zappa/readings/ppopp13.pdf

use std::cell::UnsafeCell;
use std::fmt;
use std::mem;
use std::ptr;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use std::sync::atomic::{AtomicIsize, fence};
use std::sync::Arc;

use mem::epoch::{self, Atomic, Shared, Owned};

// Once the queue is less than 1/K full, then it will be downsized. Note that
// the deque requires that this number be less than 2.
const K: isize = 4;

// Minimum number of bits that a buffer size should be. No buffer will resize to
// under this value, and all deques will initially contain a buffer of this
// size.
//
// The size in question is 1 << MIN_BITS
const MIN_BITS: u32 = 7;

#[derive(Debug)]
struct Deque<T> {
    bottom: AtomicIsize,
    top: AtomicIsize,
    array: Atomic<Buffer<T>>,
}

// FIXME: can these constraints be relaxed?
unsafe impl<T: Send> Send for Deque<T> {}
unsafe impl<T: Send> Sync for Deque<T> {}

/// Worker half of the work-stealing deque. This worker has exclusive access to
/// one side of the deque, and uses `push` and `try_pop` method to manipulate it.
///
/// There may only be one worker per deque, and operations on the worker
/// require mutable access to the worker itself.
#[derive(Debug)]
pub struct Worker<T> {
    deque: Arc<Deque<T>>,
}

/// The stealing half of the work-stealing deque. Stealers have access to the
/// opposite end of the deque from the worker, and they only have access to the
/// `steal` method.
///
/// Stealers can be cloned to have more than one handle active at a time.
#[derive(Debug)]
pub struct Stealer<T> {
    deque: Arc<Deque<T>>,
}

/// When stealing some data, this is an enumeration of the possible outcomes.
#[derive(PartialEq, Eq, Debug)]
pub enum Steal<T> {
    /// The deque was empty at the time of stealing
    Empty,
    /// The stealer lost the race for stealing data, and a retry may return more
    /// data.
    Abort,
    /// The stealer has successfully stolen some data.
    Data(T),
}

// An internal buffer used by the chase-lev deque. This structure is actually
// implemented as a circular buffer, and is used as the intermediate storage of
// the data in the deque.
//
// This Vec<T> always has a length of 0, the backing buffer is just used by the
// code below.
struct Buffer<T> {
    storage: UnsafeCell<Vec<T>>,
    log_size: u32,
}

impl<T> fmt::Debug for Buffer<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Buffer {{ ... }}")
    }
}

impl<T> Worker<T> {
    /// Pushes data onto the front of this work queue.
    pub fn push(&mut self, t: T) {
        unsafe { self.deque.push(t) }
    }

    /// Pops data off the front of the work queue, returning `None` on an empty
    /// queue.
    pub fn try_pop(&mut self) -> Option<T> {
        unsafe { self.deque.try_pop() }
    }
}

impl<T> Stealer<T> {
    /// Steals work off the end of the queue (opposite of the worker's end)
    pub fn steal(&self) -> Steal<T> {
        self.deque.steal()
    }
}

impl<T> Clone for Stealer<T> {
    fn clone(&self) -> Stealer<T> {
        Stealer { deque: self.deque.clone() }
    }
}

/// Creates a new empty deque
pub fn deque<T>() -> (Worker<T>, Stealer<T>) {
    let a = Arc::new(Deque::new());
    let b = a.clone();
    (Worker { deque: a }, Stealer { deque: b })
}

// Almost all of this code can be found directly in the paper so I'm not
// personally going to heavily comment what's going on here.

impl<T> Deque<T> {
    fn new() -> Deque<T> {
        let array = Atomic::null();
        array.store(Some(Owned::new(Buffer::new(MIN_BITS))), SeqCst);
        Deque {
            bottom: AtomicIsize::new(0),
            top: AtomicIsize::new(0),
            array: array,
        }
    }

    unsafe fn push(&self, data: T) {
        let guard = epoch::pin();

        let mut b = self.bottom.load(Relaxed);
        let t = self.top.load(Acquire);
        let mut a = self.array.load(Relaxed, &guard).unwrap();

        let size = b - t;
        if size >= (a.size() as isize) - 1 {
            // You won't find this code in the chase-lev deque paper. This is
            // alluded to in a small footnote, however. We always free a buffer
            // when growing in order to prevent leaks.
            a = self.swap_buffer(a, a.resize(b, t, 1), &guard);

            // reload the bottom counter, since swap_buffer modifies it.
            b = self.bottom.load(Relaxed);
        }
        a.put(b, data);
        fence(Release);
        self.bottom.store(b + 1, Relaxed);
    }

    unsafe fn try_pop(&self) -> Option<T> {
        let guard = epoch::pin();

        let b = self.bottom.load(Relaxed) - 1;
        let a = self.array.load(Relaxed, &guard).unwrap();
        self.bottom.store(b, Relaxed);
        fence(SeqCst); // the store to bottom must occur before loading top.
        let t = self.top.load(Relaxed);

        let size = b - t;
        if size >= 0 {
            // non-empty case
            let mut data = Some(a.get(b));
            if size == 0 {
                // last element in queue, check for races.
                if self.top.compare_and_swap(t, t + 1, SeqCst) != t {
                    // lost the race.
                    mem::forget(data.take());
                }

                // set the queue to a canonically empty state.
                self.bottom.store(b + 1, Relaxed);
            } else {
                self.maybe_shrink(b, t, &guard);
            }
            data
        } else {
            // empty queue. revert the decrement of "b" and try to shrink.
            //
            // the original chase_lev paper uses "t" here, but the new one uses "b + 1".
            // don't worry, they're the same thing: pop and steal operations will never leave
            // the top counter greater than the bottom counter. After we decrement "b" at
            // the beginning of this function, the lowest possible value it could hold here is "t - 1".
            // That's also the only value that could cause this branch to be taken.
            self.bottom.store(b + 1, Relaxed);
            None
        }
    }

    fn steal(&self) -> Steal<T> {
        let guard = epoch::pin();

        let t = self.top.load(Acquire);
        fence(SeqCst); // top must be loaded before bottom.
        let b = self.bottom.load(Acquire);

        let size = b - t;
        if size <= 0 {
            return Steal::Empty
        }

        unsafe {
            // while the paper uses a "consume" ordering here, the closest thing we have
            // available is Acquire, which is strictly stronger.
            let a = self.array.load(Acquire, &guard).unwrap();
            let data = a.get(t);
            // we may be racing against other steals and a pop.
            if self.top.compare_and_swap(t, t + 1, SeqCst) == t {
                Steal::Data(data)
            } else {
                mem::forget(data); // someone else stole this value
                Steal::Abort
            }
        }
    }

    // potentially shrink the array. This can be called only from the worker.
    unsafe fn maybe_shrink(&self, b: isize, t: isize, guard: &epoch::Guard) {
        let a = self.array.load(SeqCst, guard).unwrap();
        let size = b - t;
        if size < (a.size() as isize) / K && size > (1 << MIN_BITS) {
            self.swap_buffer(a, a.resize(b, t, -1), guard);
        }
    }

    // Helper routine not mentioned in the paper which is used in growing and
    // shrinking buffers to swap in a new buffer into place.
    //
    // As a bit of a recap, stealers can continue using buffers after this
    // method has called 'unlinked' on it. The continued usage is simply a read
    // followed by a forget, but we must make sure that the memory can continue
    // to be read after we flag this buffer for reclamation. All stealers,
    // however, have their own epoch pinned during this time so the buffer will
    // just naturally be free'd once all concurrent stealers have exited.
    //
    // This method may only be called safely from the workers due to the way it modifies
    // the array pointer.
    unsafe fn swap_buffer<'a>(&self,
                              old: Shared<'a, Buffer<T>>,
                              buf: Buffer<T>,
                              guard: &'a epoch::Guard)
                              -> Shared<'a, Buffer<T>> {
        let newbuf = Owned::new(buf);
        let newbuf = self.array.store_and_ref(newbuf, Release, &guard);
        guard.unlinked(old);

        newbuf
    }
}


impl<T> Drop for Deque<T> {
    fn drop(&mut self) {
        let guard = epoch::pin();

        // Arc enforces that we have truly exclusive access here.

        let t = self.top.load(Relaxed);
        let b = self.bottom.load(Relaxed);
        let a = self.array.swap(None, Relaxed, &guard).unwrap();
        // Free whatever is leftover in the dequeue, then free the backing
        // memory itself
        unsafe {
            for i in t..b {
                drop(a.get(i));
            }
            guard.unlinked(a);
        }
    }
}

impl<T> Buffer<T> {
    fn new(log_size: u32) -> Buffer<T> {
        Buffer {
            storage: UnsafeCell::new(Vec::with_capacity(1 << log_size)),
            log_size: log_size,
        }
    }

    fn size(&self) -> usize {
        unsafe { (*self.storage.get()).capacity() }
    }

    fn mask(&self) -> isize {
        unsafe {
            ((*self.storage.get()).capacity() - 1) as isize
        }
    }

    unsafe fn elem(&self, i: isize) -> *mut T {
        (*self.storage.get()).as_mut_ptr().offset(i & self.mask())
    }

    // This does not protect against loading duplicate values of the same cell,
    // nor does this clear out the contents contained within. Hence, this is a
    // very unsafe method which the caller needs to treat specially in case a
    // race is lost.
    unsafe fn get(&self, i: isize) -> T {
        ptr::read(self.elem(i))
    }

    // Unsafe because this unsafely overwrites possibly uninitialized or
    // initialized data.
    unsafe fn put(&self, i: isize, t: T) {
        ptr::write(self.elem(i), t);
    }

    // Again, unsafe because this has incredibly dubious ownership violations.
    // It is assumed that this buffer is immediately dropped.
    unsafe fn resize(&self, b: isize, t: isize, delta: i32) -> Buffer<T> {
        let buf = Buffer::new(((self.log_size as i32) + delta) as u32);
        for i in t..b {
            buf.put(i, self.get(i));
        }
        return buf;
    }
}

#[cfg(test)]
mod tests {
    extern crate rand;

    use super::{deque, Worker, Stealer, Steal};

    use std::thread;
    use std::sync::Arc;
    use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT,
                            AtomicUsize, ATOMIC_USIZE_INIT};
    use std::sync::atomic::Ordering::SeqCst;

    use self::rand::Rng;

    #[test]
    fn smoke() {
        let (mut w, s) = deque();
        assert_eq!(w.try_pop(), None);
        assert_eq!(s.steal(), Steal::Empty);
        w.push(1);
        assert_eq!(w.try_pop(), Some(1));
        w.push(1);
        assert_eq!(s.steal(), Steal::Data(1));
        w.push(1);
        assert_eq!(s.clone().steal(), Steal::Data(1));
    }

    #[test]
    fn stealpush() {
        static AMT: isize = 100000;
        let (mut w, s) = deque();
        let t = thread::spawn(move || {
            let mut left = AMT;
            while left > 0 {
                match s.steal() {
                    Steal::Data(i) => {
                        assert_eq!(i, 1);
                        left -= 1;
                    }
                    Steal::Abort | Steal::Empty => {}
                }
            }
        });

        for _ in 0..AMT {
            w.push(1);
        }

        t.join().unwrap();
    }

    #[test]
    fn stealpush_large() {
        static AMT: isize = 100000;
        let (mut w, s) = deque();
        let t = thread::spawn(move || {
            let mut left = AMT;
            while left > 0 {
                match s.steal() {
                    Steal::Data((1, 10)) => { left -= 1; }
                    Steal::Data(..) => panic!(),
                    Steal::Abort | Steal::Empty => {}
                }
            }
        });

        for _ in 0..AMT {
            w.push((1, 10));
        }

        t.join().unwrap();
    }

    fn stampede(mut w: Worker<Box<isize>>,
                s: Stealer<Box<isize>>,
                nthreads: isize,
                amt: usize) {
        for _ in 0..amt {
            w.push(Box::new(20));
        }
        let remaining = Arc::new(AtomicUsize::new(amt));

        let threads = (0..nthreads).map(|_| {
            let remaining = remaining.clone();
            let s = s.clone();
            thread::spawn(move || {
                while remaining.load(SeqCst) > 0 {
                    match s.steal() {
                        Steal::Data(val) => {
                            if *val == 20 {
                                remaining.fetch_sub(1, SeqCst);
                            } else {
                                panic!()
                            }
                        }
                        Steal::Abort | Steal::Empty => {}
                    }
                }
            })
        }).collect::<Vec<_>>();

        while remaining.load(SeqCst) > 0 {
            if let Some(val) = w.try_pop() {
                if *val == 20 {
                    remaining.fetch_sub(1, SeqCst);
                } else {
                    panic!()
                }
            }
        }

        for thread in threads.into_iter() {
            thread.join().unwrap();
        }
    }

    #[test]
    fn run_stampede() {
        let (w, s) = deque();
        stampede(w, s, 8, 10000);
    }

    #[test]
    fn many_stampede() {
        static AMT: usize = 4;
        let threads = (0..AMT).map(|_| {
            let (w, s) = deque();
            thread::spawn(|| {
                stampede(w, s, 4, 10000);
            })
        }).collect::<Vec<_>>();

        for thread in threads.into_iter() {
            thread.join().unwrap();
        }
    }

    #[test]
    fn stress() {
        static AMT: isize = 100000;
        static NTHREADS: isize = 8;
        static DONE: AtomicBool = ATOMIC_BOOL_INIT;
        static HITS: AtomicUsize = ATOMIC_USIZE_INIT;
        let (mut w, s) = deque();

        let threads = (0..NTHREADS).map(|_| {
            let s = s.clone();
            thread::spawn(move || {
                loop {
                    match s.steal() {
                        Steal::Data(2) => { HITS.fetch_add(1, SeqCst); }
                        Steal::Data(..) => panic!(),
                        _ if DONE.load(SeqCst) => break,
                        _ => {}
                    }
                }
            })
        }).collect::<Vec<_>>();

        let mut rng = rand::thread_rng();
        let mut expected = 0;
        while expected < AMT {
            if rng.gen_range(0, 3) == 2 {
                match w.try_pop() {
                    None => {}
                    Some(2) => { HITS.fetch_add(1, SeqCst); },
                    Some(_) => panic!(),
                }
            } else {
                expected += 1;
                w.push(2);
            }
        }

        while HITS.load(SeqCst) < AMT as usize {
            match w.try_pop() {
                None => {}
                Some(2) => { HITS.fetch_add(1, SeqCst); },
                Some(_) => panic!(),
            }
        }
        DONE.store(true, SeqCst);

        for thread in threads.into_iter() {
            thread.join().unwrap();
        }

        assert_eq!(HITS.load(SeqCst), expected as usize);
    }

    #[test]
    fn no_starvation() {
        static AMT: isize = 10000;
        static NTHREADS: isize = 4;
        static DONE: AtomicBool = ATOMIC_BOOL_INIT;
        let (mut w, s) = deque();

        let (threads, hits): (Vec<_>, Vec<_>) = (0..NTHREADS).map(|_| {
            let s = s.clone();
            let ctr = Arc::new(AtomicUsize::new(0));
            let ctr2 = ctr.clone();
            (thread::spawn(move || {
                loop {
                    match s.steal() {
                        Steal::Data((1, 2)) => { ctr.fetch_add(1, SeqCst); }
                        Steal::Data(..) => panic!(),
                        _ if DONE.load(SeqCst) => break,
                        _ => {}
                    }
                }
            }), ctr2)
        }).unzip();

        let mut rng = rand::thread_rng();
        let mut myhit = false;
        'outer: loop {
            for _ in 0..rng.gen_range(0, AMT) {
                if !myhit && rng.gen_range(0, 3) == 2 {
                    match w.try_pop() {
                        None => {}
                        Some((1, 2)) => myhit = true,
                        Some(_) => panic!(),
                    }
                } else {
                    w.push((1, 2));
                }
            }

            for slot in hits.iter() {
                let amt = slot.load(SeqCst);
                if amt == 0 { continue 'outer; }
            }
            if myhit {
                break
            }
        }

        DONE.store(true, SeqCst);

        for thread in threads.into_iter() {
            thread.join().unwrap();
        }
    }
}