1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
use std::cell::RefCell; use std::fmt; use std::mem; use std::rc::Rc; use std::sync::atomic::Ordering; use std::sync::Arc; use std::thread; use {spawn_unsafe, FnBox}; use sync::AtomicOption; pub struct Scope<'a> { dtors: RefCell<Option<DtorChain<'a>>> } struct DtorChain<'a> { dtor: Box<FnBox + 'a>, next: Option<Box<DtorChain<'a>>> } enum JoinState { Running(thread::JoinHandle<()>), Joined, } impl JoinState { fn join(&mut self) { let mut state = JoinState::Joined; mem::swap(self, &mut state); if let JoinState::Running(handle) = state { let res = handle.join(); if !thread::panicking() { res.unwrap(); } } } } /// A handle to a scoped thread pub struct ScopedJoinHandle<T> { inner: Rc<RefCell<JoinState>>, packet: Arc<AtomicOption<T>>, thread: thread::Thread, } /// Create a new `scope`, for deferred destructors. /// /// Scopes, in particular, support [*scoped thread spawning*](struct.Scope.html#method.spawn). /// /// # Examples /// /// Creating and using a scope: /// /// ``` /// crossbeam::scope(|scope| { /// scope.defer(|| println!("Exiting scope")); /// scope.spawn(|| println!("Running child thread in scope")) /// }); /// // Prints messages in the reverse order written /// ``` pub fn scope<'a, F, R>(f: F) -> R where F: FnOnce(&Scope<'a>) -> R { let mut scope = Scope { dtors: RefCell::new(None) }; let ret = f(&scope); scope.drop_all(); ret } impl<'a> fmt::Debug for Scope<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Scope {{ ... }}") } } impl<T> fmt::Debug for ScopedJoinHandle<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "ScopedJoinHandle {{ ... }}") } } impl<'a> Scope<'a> { // This method is carefully written in a transactional style, so // that it can be called directly and, if any dtor panics, can be // resumed in the unwinding this causes. By initially running the // method outside of any destructor, we avoid any leakage problems // due to @rust-lang/rust#14875. fn drop_all(&mut self) { loop { // use a separate scope to ensure that the RefCell borrow // is relinquishe before running `dtor` let dtor = { let mut dtors = self.dtors.borrow_mut(); if let Some(mut node) = dtors.take() { *dtors = node.next.take().map(|b| *b); node.dtor } else { return } }; dtor.call_box() } } /// Schedule code to be executed when exiting the scope. /// /// This is akin to having a destructor on the stack, except that it is /// *guaranteed* to be run. pub fn defer<F>(&self, f: F) where F: FnOnce() + 'a { let mut dtors = self.dtors.borrow_mut(); *dtors = Some(DtorChain { dtor: Box::new(f), next: dtors.take().map(Box::new) }); } /// Create a scoped thread. /// /// `spawn` is similar to the [`spawn`][spawn] function in Rust's standard library. The /// difference is that this thread is scoped, meaning that it's guaranteed to terminate /// before the current stack frame goes away, allowing you to reference the parent stack frame /// directly. This is ensured by having the parent thread join on the child thread before the /// scope exits. /// /// [spawn]: http://doc.rust-lang.org/std/thread/fn.spawn.html /// /// # Examples /// /// A basic scoped thread: /// /// ``` /// crossbeam::scope(|scope| { /// scope.spawn(|| { /// println!("Hello from a scoped thread!"); /// }); /// }); /// ``` /// /// When writing concurrent Rust programs, you'll sometimes see a pattern like this, using /// [`std::thread::spawn`][spawn]: /// /// ```ignore /// let array = [1, 2, 3]; /// let mut guards = vec![]; /// /// for i in &array { /// let guard = std::thread::spawn(move || { /// println!("element: {}", i); /// }); /// /// guards.push(guard); /// } /// /// for guard in guards { /// guard.join().unwrap(); /// } /// ``` /// /// The basic pattern is: /// /// 1. Iterate over some collection. /// 2. Spin up a thread to operate on each part of the collection. /// 3. Join all the threads. /// /// However, this code actually gives an error: /// /// ```text /// error: `array` does not live long enough /// for i in &array { /// ^~~~~ /// in expansion of for loop expansion /// note: expansion site /// note: reference must be valid for the static lifetime... /// note: ...but borrowed value is only valid for the block suffix following statement 0 at ... /// let array = [1, 2, 3]; /// let mut guards = vec![]; /// /// for i in &array { /// let guard = std::thread::spawn(move || { /// println!("element: {}", i); /// ... /// error: aborting due to previous error /// ``` /// /// Because [`std::thread::spawn`][spawn] doesn't know about this scope, it requires a /// `'static` lifetime. One way of giving it a proper lifetime is to use an [`Arc`][arc]: /// /// [arc]: http://doc.rust-lang.org/stable/std/sync/struct.Arc.html /// /// ``` /// use std::sync::Arc; /// /// let array = Arc::new([1, 2, 3]); /// let mut guards = vec![]; /// /// for i in (0..array.len()) { /// let a = array.clone(); /// /// let guard = std::thread::spawn(move || { /// println!("element: {}", a[i]); /// }); /// /// guards.push(guard); /// } /// /// for guard in guards { /// guard.join().unwrap(); /// } /// ``` /// /// But this introduces unnecessary allocation, as `Arc<T>` puts its data on the heap, and we /// also end up dealing with reference counts. We know that we're joining the threads before /// our function returns, so just taking a reference _should_ be safe. Rust can't know that, /// though. /// /// Enter scoped threads. Here's our original example, using `spawn` from crossbeam rather /// than from `std::thread`: /// /// ``` /// let array = [1, 2, 3]; /// /// crossbeam::scope(|scope| { /// for i in &array { /// scope.spawn(move || { /// println!("element: {}", i); /// }); /// } /// }); /// ``` /// /// Much more straightforward. pub fn spawn<F, T>(&self, f: F) -> ScopedJoinHandle<T> where F: FnOnce() -> T + Send + 'a, T: Send + 'a { let their_packet = Arc::new(AtomicOption::new()); let my_packet = their_packet.clone(); let join_handle = unsafe { spawn_unsafe(move || { their_packet.swap(f(), Ordering::Relaxed); }) }; let thread = join_handle.thread().clone(); let deferred_handle = Rc::new(RefCell::new(JoinState::Running(join_handle))); let my_handle = deferred_handle.clone(); self.defer(move || { let mut state = deferred_handle.borrow_mut(); state.join(); }); ScopedJoinHandle { inner: my_handle, packet: my_packet, thread: thread, } } } impl<T> ScopedJoinHandle<T> { /// Join the scoped thread, returning the result it produced. pub fn join(self) -> T { self.inner.borrow_mut().join(); self.packet.take(Ordering::Relaxed).unwrap() } /// Get the underlying thread handle. pub fn thread(&self) -> &thread::Thread { &self.thread } } impl<'a> Drop for Scope<'a> { fn drop(&mut self) { self.drop_all() } }