1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
use std::cell::RefCell;
use std::fmt;
use std::mem;
use std::rc::Rc;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::thread;

use {spawn_unsafe, FnBox};
use sync::AtomicOption;

pub struct Scope<'a> {
    dtors: RefCell<Option<DtorChain<'a>>>
}

struct DtorChain<'a> {
    dtor: Box<FnBox + 'a>,
    next: Option<Box<DtorChain<'a>>>
}

enum JoinState {
    Running(thread::JoinHandle<()>),
    Joined,
}

impl JoinState {
    fn join(&mut self) {
        let mut state = JoinState::Joined;
        mem::swap(self, &mut state);
        if let JoinState::Running(handle) = state {
            let res = handle.join();

            if !thread::panicking() { res.unwrap(); }
        }
    }
}

/// A handle to a scoped thread
pub struct ScopedJoinHandle<T> {
    inner: Rc<RefCell<JoinState>>,
    packet: Arc<AtomicOption<T>>,
    thread: thread::Thread,
}

/// Create a new `scope`, for deferred destructors.
///
/// Scopes, in particular, support [*scoped thread spawning*](struct.Scope.html#method.spawn).
///
/// # Examples
///
/// Creating and using a scope:
///
/// ```
/// crossbeam::scope(|scope| {
///     scope.defer(|| println!("Exiting scope"));
///     scope.spawn(|| println!("Running child thread in scope"))
/// });
/// // Prints messages in the reverse order written
/// ```
pub fn scope<'a, F, R>(f: F) -> R where F: FnOnce(&Scope<'a>) -> R {
    let mut scope = Scope { dtors: RefCell::new(None) };
    let ret = f(&scope);
    scope.drop_all();
    ret
}

impl<'a> fmt::Debug for Scope<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Scope {{ ... }}")
    }
}

impl<T> fmt::Debug for ScopedJoinHandle<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ScopedJoinHandle {{ ... }}")
    }
}

impl<'a> Scope<'a> {
    // This method is carefully written in a transactional style, so
    // that it can be called directly and, if any dtor panics, can be
    // resumed in the unwinding this causes. By initially running the
    // method outside of any destructor, we avoid any leakage problems
    // due to @rust-lang/rust#14875.
    fn drop_all(&mut self) {
        loop {
            // use a separate scope to ensure that the RefCell borrow
            // is relinquishe before running `dtor`
            let dtor = {
                let mut dtors = self.dtors.borrow_mut();
                if let Some(mut node) = dtors.take() {
                    *dtors = node.next.take().map(|b| *b);
                    node.dtor
                } else {
                    return
                }
            };
            dtor.call_box()
        }
    }

    /// Schedule code to be executed when exiting the scope.
    ///
    /// This is akin to having a destructor on the stack, except that it is
    /// *guaranteed* to be run.
    pub fn defer<F>(&self, f: F) where F: FnOnce() + 'a {
        let mut dtors = self.dtors.borrow_mut();
        *dtors = Some(DtorChain {
            dtor: Box::new(f),
            next: dtors.take().map(Box::new)
        });
    }

    /// Create a scoped thread.
    ///
    /// `spawn` is similar to the [`spawn`][spawn] function in Rust's standard library. The
    /// difference is that this thread is scoped, meaning that it's guaranteed to terminate
    /// before the current stack frame goes away, allowing you to reference the parent stack frame
    /// directly. This is ensured by having the parent thread join on the child thread before the
    /// scope exits.
    ///
    /// [spawn]: http://doc.rust-lang.org/std/thread/fn.spawn.html
    ///
    /// # Examples
    ///
    /// A basic scoped thread:
    ///
    /// ```
    /// crossbeam::scope(|scope| {
    ///     scope.spawn(|| {
    ///         println!("Hello from a scoped thread!");
    ///     });
    /// });
    /// ```
    ///
    /// When writing concurrent Rust programs, you'll sometimes see a pattern like this, using
    /// [`std::thread::spawn`][spawn]:
    ///
    /// ```ignore
    /// let array = [1, 2, 3];
    /// let mut guards = vec![];
    ///
    /// for i in &array {
    ///     let guard = std::thread::spawn(move || {
    ///         println!("element: {}", i);
    ///     });
    ///
    ///     guards.push(guard);
    /// }
    ///
    /// for guard in guards {
    ///     guard.join().unwrap();
    /// }
    /// ```
    ///
    /// The basic pattern is:
    ///
    /// 1. Iterate over some collection.
    /// 2. Spin up a thread to operate on each part of the collection.
    /// 3. Join all the threads.
    ///
    /// However, this code actually gives an error:
    ///
    /// ```text
    /// error: `array` does not live long enough
    /// for i in &array {
    ///           ^~~~~
    /// in expansion of for loop expansion
    /// note: expansion site
    /// note: reference must be valid for the static lifetime...
    /// note: ...but borrowed value is only valid for the block suffix following statement 0 at ...
    ///     let array = [1, 2, 3];
    ///     let mut guards = vec![];
    ///
    ///     for i in &array {
    ///         let guard = std::thread::spawn(move || {
    ///             println!("element: {}", i);
    /// ...
    /// error: aborting due to previous error
    /// ```
    ///
    /// Because [`std::thread::spawn`][spawn] doesn't know about this scope, it requires a
    /// `'static` lifetime. One way of giving it a proper lifetime is to use an [`Arc`][arc]:
    ///
    /// [arc]: http://doc.rust-lang.org/stable/std/sync/struct.Arc.html
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let array = Arc::new([1, 2, 3]);
    /// let mut guards = vec![];
    ///
    /// for i in (0..array.len()) {
    ///     let a = array.clone();
    ///
    ///     let guard = std::thread::spawn(move || {
    ///         println!("element: {}", a[i]);
    ///     });
    ///
    ///     guards.push(guard);
    /// }
    ///
    /// for guard in guards {
    ///     guard.join().unwrap();
    /// }
    /// ```
    ///
    /// But this introduces unnecessary allocation, as `Arc<T>` puts its data on the heap, and we
    /// also end up dealing with reference counts. We know that we're joining the threads before
    /// our function returns, so just taking a reference _should_ be safe. Rust can't know that,
    /// though.
    ///
    /// Enter scoped threads. Here's our original example, using `spawn` from crossbeam rather
    /// than from `std::thread`:
    ///
    /// ```
    /// let array = [1, 2, 3];
    ///
    /// crossbeam::scope(|scope| {
    ///     for i in &array {
    ///         scope.spawn(move || {
    ///             println!("element: {}", i);
    ///         });
    ///     }
    /// });
    /// ```
    ///
    /// Much more straightforward.
    pub fn spawn<F, T>(&self, f: F) -> ScopedJoinHandle<T> where
        F: FnOnce() -> T + Send + 'a, T: Send + 'a
    {
        let their_packet = Arc::new(AtomicOption::new());
        let my_packet = their_packet.clone();

        let join_handle = unsafe {
            spawn_unsafe(move || {
                their_packet.swap(f(), Ordering::Relaxed);
            })
        };

        let thread = join_handle.thread().clone();
        let deferred_handle = Rc::new(RefCell::new(JoinState::Running(join_handle)));
        let my_handle = deferred_handle.clone();

        self.defer(move || {
            let mut state = deferred_handle.borrow_mut();
            state.join();
        });

        ScopedJoinHandle {
            inner: my_handle,
            packet: my_packet,
            thread: thread,
        }
    }
}

impl<T> ScopedJoinHandle<T> {
    /// Join the scoped thread, returning the result it produced.
    pub fn join(self) -> T {
        self.inner.borrow_mut().join();
        self.packet.take(Ordering::Relaxed).unwrap()
    }

    /// Get the underlying thread handle.
    pub fn thread(&self) -> &thread::Thread {
        &self.thread
    }
}

impl<'a> Drop for Scope<'a> {
    fn drop(&mut self) {
        self.drop_all()
    }
}